RDCH 702: Lecture 10 Radiochemistry in reactors

- Readings: Radiochemistry in Light Water Reactors, Chapter 3 (on readings webpage and lecture webpage) <u>Outline</u>
- Speciation in irradiated fuel
- Utilization of resulting isotopics
- Fission Product Chemistry
- Fuel confined in reactor to fuel region
 - Potential for interaction with cladding material
 → Initiate stress corrosion cracking
 - Chemical knowledge useful in events where fuel is outside of cladding
- Some radionuclides generated in structural material
 - Neutron activation of material

 \rightarrow Activation products (i.e., ⁶⁰Co)

Fission process

Neutro

irradiation

x

- Fission drives process for introducing elements into fuel
- Recoil length about 10 microns, diameter of 6 nm
 - About size of UO₂ crystal
 - 95 % of energy into stopping power
 - → Remainder into lattice defects
 - * Radiation induced creep
 - * Swelling
 - High local temperature from fission
 - → 3300 K in 10 nm diameter
- Delayed neutron fission products
 - 0.75 % of total neutrons
 - → ¹³⁷⁻¹³⁹I and ⁸⁷⁻⁹⁰Br as examples
- Some neutron capture of fission products
 - influences effective decay constant

- z+∆z Svelling Volume increase y+∆y •Isotropic Shape Change •Radiation-induced
 - Creep: •No volume change •Shape Change •Radiation-influenced

 $\Lambda_{eff} = \lambda + \sigma \phi$

z

 $x + \Delta x$

 $X-\Delta X$

 $z+\Delta z$

y-∆y

Burnup

- Measure of extracted energy from fuel
 - Fraction of fuel atoms that underwent fission
 - → %FIMA (fissions per initial metal atom)
 - Actual energy released per mass of initial fuel
 - → Gigawatt-days/metric ton heavy metal (GWd/MTHM)
 - → Megawatt-days/kg heavy metal (MWd/kgHM)
 - \rightarrow 1 MeV=4.45E-23 MW h
- Burnup relationship
 - Plant thermal power times days dividing by the mass of the initial fuel loading
 - Converting between percent and energy/mass by using energy released per fission event
 - → typical value is 200 MeV/fission
 - → 100 % burnup around 1000 GWd/MTHM
- **Determine burnup**
 - Find residual concentrations of fissile nuclides after irradiation
 - → Burnup from difference between final and initial values
 - \rightarrow Need to account for neutron capture on fissile nuclides
 - **Find fission product concentration in fuel**
 - \rightarrow Need suitable half-life
 - \rightarrow Need knowledge of nuclear data
 - * cumulative fission yield, neutron capture cross section
 - \rightarrow Simple analytical procedure
 - \rightarrow ¹³⁷Cs (some migration issues) ¹⁴²Nd(stable isotope), ¹⁵²Eu are suitable fission products
 - Neutron detection also used
 - → Need to minimize ²⁴⁴Cm due to spontaneous fission of isotope

Radionuclides in fuel

Table 3.1. Mass concentrations of actinide isotopes (in g/kg HM) in different types of fresh nuclear fuel

Table 3.6. Actinide element concentrations (g/kg HM) in irradiated LWR uranium fuel (initial enrichment 4.0% ²³⁵U) (By courtesy of Siemens/KWU)

(By courtesy of Siemens/KWU)

	Nat. U	3.5% ²³⁵ U	3.1% Mox	3.8% repr. U
²³² U				1.0 - 10-5
²³⁴ U	0.06	0.4	0.05	0.7
235U	7.2	35.0	6.8	38.0
136U				10.0
³⁸ U	992.8	965.0	949.0	951.0
³⁸ Pu			0.6	
³⁹ Pu			27.5	
⁴⁰ Pu			10.7	
²⁴¹ Pu			3.5	
⁴² Pu			2.0	

- Actual Pu isotopics in MOX fuel may vary
 - Activity dominated by other Pu isotopes
 - Ingrowth of ²⁴¹Am
 - MOX fuel fabrication in glove boxes

Element	Charge	Fuel burnup (MWd/kg HM)					
(g/kg HM)		13.0	26.0	39.0	52.0	65.0	
Uranium	1.00 E+3	9.82 E+2	9.65E+2	9.49 E+2	9.34 E+2	9.19 E+2	
Neptunium	0	1.73 E-1	3.8 E-1	6.3 E-1	8.6 E-1	1.04	
Plutonium	0	5.01	8.0	1.01 E+1	1.17 E+1	1.28 E+	
Americium	0	5.3 E-3	4.9 E-2	1.6 E-1	3.3 E-1	5.5 E-1	
Curium	0	5 E-4	9.8 E-3	5.1 E-2	1.6 E-1	C E-1	
Berkelium	0		1.0 E-11	7.7 E-10	1.6 E-8	1 FE- 7	
Californium	0		4.1 E-12	4.5 E-10	1.2 E-8	E-7	
Einsteinium	0		1.6 E-16	4.9 E-14	2.7 E-12) E-11	
(initial Pu con	ntent 4.0% P	u _{fiss}	ions (g/kg HN	A) in irradiate	ed LWR mixe	ed- de fue	
Table 3.7. Ac (initial Pu cor (By courtesy of Element	ntent 4.0% P	u _{fiss} Wl	ions (g/kg HN		ed LWR mixe	ed- de fue	
(initial Pu cor (By courtesy d Element	of Siemens/K	u _{fiss} Wl			2d LWR mixe	ed- de fue	
(initial Pu cor (By courtesy of Element (g/kg HM)	of Siemens/K		p (MWd/kg F	IM)		ed- de fue	
(initial Pu cor (By courtesy d Element (g/kg HM) Uranium	ntent 4.0% P of Siemens/K Charge	Unss WI F burnu	p (MWd/kg F 26.0	HM) 39.0	52.0		
(initial Pu cor (By courtesy of Element (g/kg HM) Uranium Neptunium	of Siemens/K Charge 9.37 E+2	^u fiss <u>F</u> burnu [: 9, E+2	p (MWd/kg F 26.0 9.22 E+2	HM) 39.0 9.14 E+2	52.0 9.05 E+2	• E+2	
(initial Pu cor (By courtesy of Element (g/kg HM) Uranium Neptunium Plutonium	htent 4.0% P of Siemens/K Charge 9.37 E+2 0	u _{fiss} <u>F</u> burnu [: 9. E+2 y -2	p (MWd/kg E 26.0 9.22 E+2 1.45 E-1	HM) 39.0 9.14 E+2 2.03 E-1	52.0 9.05 E+2 2.74 E-I	E+2 E-1	
(initial Pu cor (By courtesy of Element (g/kg HM) Uranium Neptunium Plutonium Americium	ntent 4.0% P of Siemens/K Charge 9.37 E+2 0 6.32 E+1	Ufiss E F burnu I: 9. E+2 0. E+2 0. E+2 0. E+2 0. E+2 0. E+1	p (MWd/kg H 26.0 9.22 E+2 1.45 E-1 4.93 E+1	HM) 39.0 9.14 E+2 2.03 E-1 4.29 E+1	52.0 9.05 E+2 2.74 E-1 3.75 E+1	E+2 3.92 E+1	
(initial Pu cor (By courtesy of Element (g/kg HM) Uranium Neptunium Plutonium Americium Curium	9.37 E+2 0 6.32 E+1 0	Ufiss WI F burnu I: 9. E+2 0. E+2 0. E+2 0. E+2 0. E+2 1.08	p (MWd/kg H 26.0 9.22 E+2 1.45 E-1 4.93 E+1 1.95	HM) 39.0 9.14 E+2 2.03 E-1 4.29 E+1 2.64	52.0 9.05 E+2 2.74 E-I 3.75 E+1 3.21	E+2 E-1 3.42 E+1 3.67	
(initial Pu cor (By courtesy of	9.37 E+2 0 0 0	Ufiss W1 F burnu I: 9. E+2 9. E+2 9. E+2 5.0 E+1 1.08 1.2 E-1	p (MWd/kg H 26.0 9.22 E+2 1.45 E-1 4.93 E+1 1.95 4.1 E-1	HM) 39.0 9.14 E+2 2.03 E-1 4.29 E+1 2.64 8.6 E-1	52.0 9.05 E+2 2.74 E-I 3.75 E+1 3.21 1.51	E+2 E-1 3.92 E+1 3.67 2.37	

Fuel variation during irradiation

- Chemical composition of fuel
 - Higher concentrations of Ru, Rh, and Pd in Pu fuel
- Radionuclide inventory
- Pellet structure
- Total activity of fuel effected by saturation
 - Tends to reach maximum
- Radionuclide fuel distribution studied
 - Fission gas release
 - Axial distribution by gamma scanning
- Radial distribution to evaluate flux

Table 3.3. Fission product element concentrations (g/kg HM) in irradiated LWR uranium fuel (initial enrichment 4.0% ²³⁵U) (By courtesy of Siemens/KWU)

Element	Fuel burnup (MWd/kg HM)						
	13.0	26.0	39.0	52.0	65.0		
Bromine	0.0093	0.018	0.026	0.034	0.041		
Krypton	0.16	0.31	0.43	0.54	0.64		
Rubidium	0.16	0.29	0.41	0.51	0.60		
Strontium	0.47	0.82	1.11	1.36	1.57		
Yttrium	0.24	0.42	0.58	0.71	0.82		
Zirconium	1.56	2.97	4.27	5.48	6.62		
Niobium	0.045	0.044	0.042	0.040	0.038		
Molybdenum	1.23	2.57	3.89	5.18	6.46		
Technetium	0.33	0.64	0.91	1.14	1.33		
Ruthenium	0.84	1.76	2.76	3.85	5.00		
Rhodium	0.17	0.35	0.50	0.60	0.66		
Palladium	0.23	0.68	1.34	2.18	3.18		
Silver	0.015	0.042	0.073	0.11	0.14		
Cadmium	0.011	0.037	0.080	0.15	0.23		
Indium	0.0007	0.0013	0.0016	0.0017	0.0018		
Tin	0.014	0.032	0.054	0.079	0.11		
Antimony	0.0058	0.013	0.020	0.027	0.034		
Tellurium	0.16	0.34	0.53	0.74	0.96		
Iodine	0.080	0.17	0.27	0.37	0.47		
Xenon	2.02	4.07	6.16	8.28	10.4		
Cesium	1.14	2.27	3.34	4.36	5.32		
Barium	0.56	1.10	1.66	2.26	2.89		
Lanthanum	0.51	0.99	1.45	1.90	2.32		
Corium	1.30	2.34	3.28	4.19	5.07		
Praseodymium	0.43	0.87	1.30	1.71	2.11		
Neodymium	1 38	2.89	4 47	5.93	7 4 1		
Promethium	0.13	0.18	0.19	0.19	0.17		
Samarium	0.23	0.51	0.81	1.10	1.36		
Europium	0.036	0.10	0.19	0.27	0.34		
Gadolinium	0.0094	0.037	0.10	0.22	0.40		
Totals	13.5	26.9	40.3	53.6	66.8		

Distribution in fuel

- Axial fission product distribution corresponds very closely to the time-averaged neutron flux distribution
 - PWR activity level in the middle
 - - → local decrease in fission rates
 - Fuel density effects
 - \rightarrow Dishing at end of fuel
 - → Disappear due to fuel swelling
 - BWR shows asymmetric distribution
 - \rightarrow Control rod positions

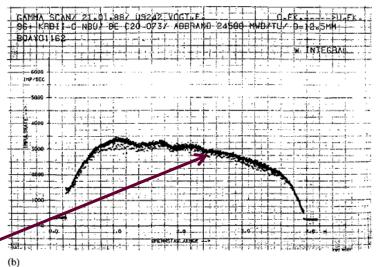
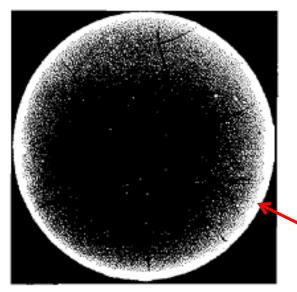
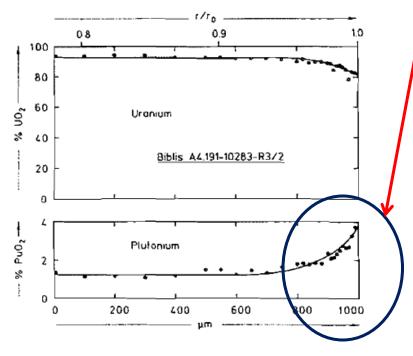
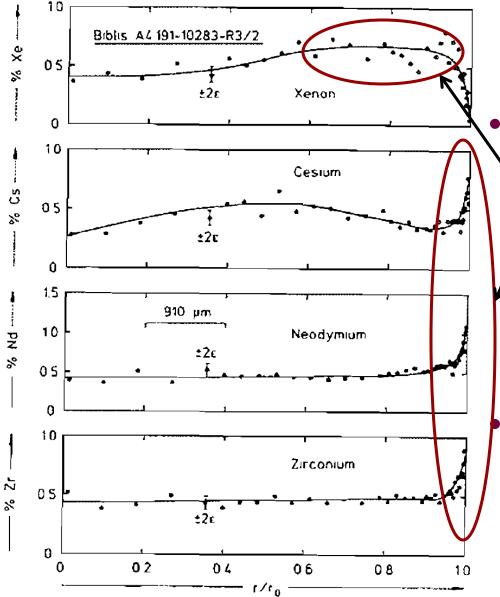




Figure 3.6. Axial gross gamma scans of high-burnup fuel rods a) PWR fuel rod; b) BWR fuel rod (By courtesy of Siemens/KWU)



Transuranics on fuel rim

Distribution in Fuel

- Radial distribution of fission products mainly governed by thermal neutron flux profile
- Higher Pu concentration in outer zone of fuel
 - Epithermal neutron capture on ²³⁸U
 - Small influence of thermal migration on Cs
 - → Gaseous and volatile fission products
 - → Influence by fuel initial composition (O to M ratio)

Distribution in Fuel **Increased Pu** concentration on rim leads to increased fission product density **We behavior** influenced by **bubble gas location Consumption of** burnable poison **Gd isotopes 157** and 155 depleted in

outer zone

Figure 3.9. Fission product distribution as a function of the relative fuel pellet radius in a LWR high-burnup oxide fuel (Kleykamp, 1990a)

Distribution in fuel: Thermal behavior

- Mainly affects gaseous and volatile fission products
 - linear heat rating
 - pellet temperatures during reactor operation
 - stoichiometry of fuel
- Halogens and alkali elements
 - Cs and I volatility
 - \rightarrow High fission yields
 - \rightarrow Enhanced mobility
 - Can be treated similarly

→ different chemical behavior limited in fuel behavior

Iodine and Cs

- CsI added to UO₂
 - Both elements have same maximum location at 1000 °C
 - Behavior as CsI
- UO_{2+x}
 - Iodine property changes, mobility to lower temperature regions
 - → Elemental I₂ rather than I⁻
- Formation in range of x to 0.02
- No change in Cs chemistry
 - remains monovalent
- release of cesium and iodine from fuel at 1100 to 1300 K
 - Increases with temperature

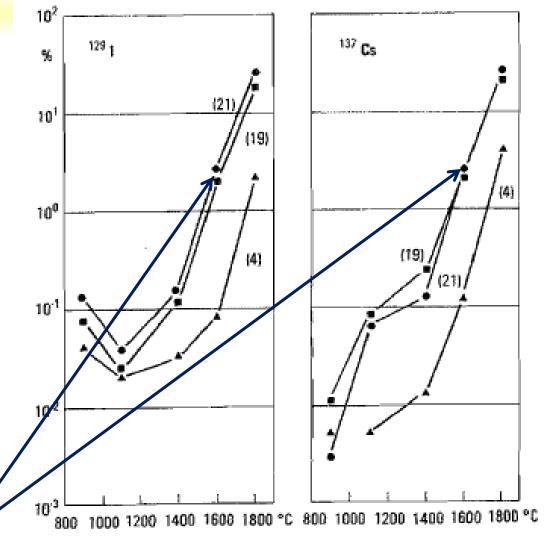


Figure 3.18. Iodine and cesium exhalation from irradiated UO₂ fuel (Sample 4: burnup 11 MWd/kg U; samples 19 and 21: 33 MWd/kg U)

Iodine and Cs

- Cs and iodine release rates increase with increasing temperature
 - 2100 K largest fraction released after 60 seconds
- Both elements released at significantly faster rate from higherburnup fuel
 - Different release mechanism
- Attributed to fission product atoms which already migrated to grain boundaries
 - UO₂ lattice difficulty in incorporating large atomic radii ions

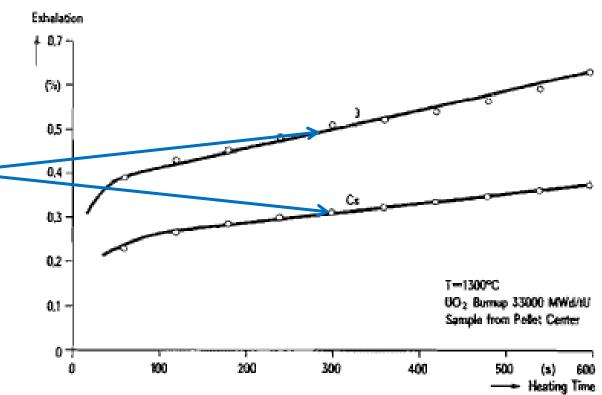
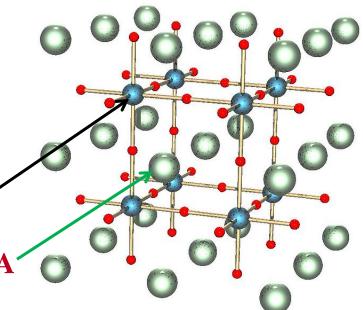
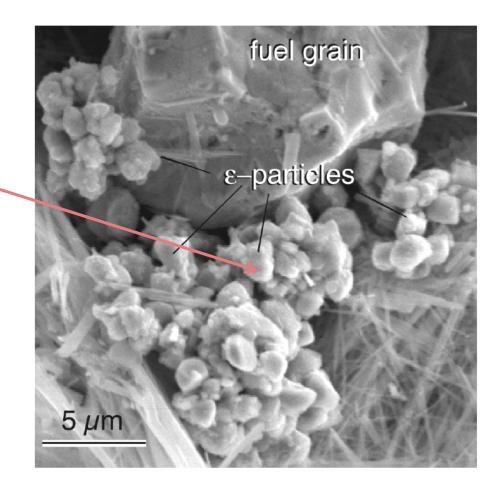
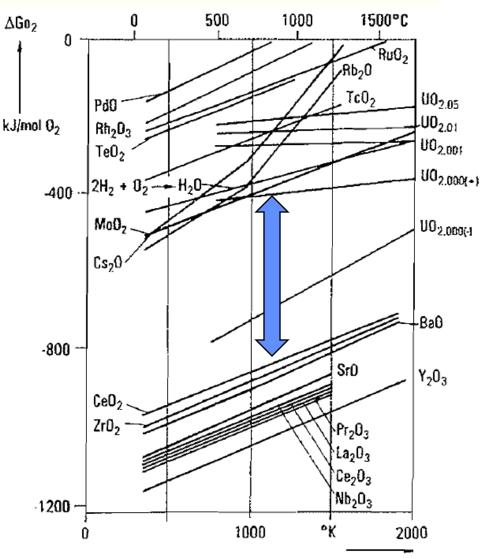



Figure 3.19. Iodine and cesium exhalation from irradiated UO₂ fuel as a function of heating time


Perovskite phase (A²⁺B⁴⁺O₃)

- Most fission products homogeneously distributed in UO₂ matrix
 - Solid solution formation or relatively low concentration of fission products
- With increasing fission product concentration formation of secondary phases possible
 - Exceed solubility limits in UO₂
- Perovskite identified oxide phase
 - B site: U, Pu, Zr, Mo, and Lanthanides
 - Mono- and divalent elements at A
 → Ba, Sr, Cs
- Mechanism of formation
 - Sr and Zr form phases initially
 - Lanthanides added at high burnup


- Metallic phase of fission products in fuel
 - Mo (24-43 wt %)
 - **Tc (8-16 wt %)**
 - Ru (27-52 wt %)
 - Rh (4-10 wt %)
 - Pd (4-10 wt %)
 - → Metal above tend to not forms oxides
- Grain sizes around 1 micron
- Concentration nearly linear with fuel burnup
 - 5 g/kg at 10 MWd/kg
 - 15 g/kg at 40 MWd/kg
 U

Epsilon phase

Epsilon Phase

- Formation of metallic phase promoted by higher linear heat
 - high Pd concentrations (20 wt %) indicate a relatively low fuel temperature
 - Mo behavior controlled by oxygen potential
 - → High metallic Mo indicates O:M of 2
 - → O:M above 2, more Mo in UO₂ lattice

Relative partial molar Gibbs free energy of $oxygen_4$ of fission product oxides and UO₂

Grouping fission product and actinide behavior

IA IIA

Li Be

Nalvigilla IVA VA VIA VIIA

Ca Sc Ti

Fr Ra Ac

- Experiments performed between 1450 °C and 1825 °C
 - trace-irradiated UO₂ fuel material
 - Limit formation of fission products compounds
- 4 categories
- Elements with highest electronegativities have highest mobilities
 - Te, I
- Low valent cations and low fuel solubility
 - Cs, Ba
- Neutral species with low solubility
 - Xe, Ru, Tc
 - Similar behavior to low valent cations
 - (xenon, ruthenium,
- polyvalent elements were not released from fuel
 - Nd, La, Zr, Np
- Ions with high charges remain in UO₂
- Neutral atoms or monovalent fission products are mobile
 - Evident at higher temperatures
 - \rightarrow higher fuel rod heat ratings
 - \rightarrow accident conditions

Ce Pr Nd PmSm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu AmCmBk Cf Es FmMdNoLw

IB IIB Al Si

IIIB IVB VB VIB VIIB

F

Cl

Orange: volatile fission products Grey: metallic precipitates Blue: oxide precipitates Green: solid solution

VIII

V CrMnFeCoNiCuZnGaGe

Zr NbMo Tc Ru Rh Pd Ag Cd In Sn Sb <mark>Te</mark>

Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

Review

- How is uranium chemistry linked with chemistry in fuel
- What are the main oxidation states of the fission products and actinides in fuel
- What drives the speciation of actinides and fission products in fuel
- How is volatility linked with fission product chemistry
- What are general trends in fission product chemistry

Questions

- 1. What drives the speciation of actinides and fission products in spent nuclear fuel?
- 2. What would be the difference between oxide and metallic fuel?
- 3. Why do the metallic phases form in oxide fuel
- 4. How is the behavior of Tc in fuel related to the U:O stoichiometry?

PDF Quiz and Blog

- Final PDF quiz
 - PDF quiz 10
- Provide comments in blog